Answer
See proof
Work Step by Step
We have to prove the identity:
$\binom{n}{0}+\binom{n}{1}+...+\binom{n}{n}=2^n$
We have:
$(1+1)^n=2^n$
Use the Binomial Theorem to expand the left side:
$\binom{n}{0}1^n1^0+\binom{n}{1}1^{n-1}1^1+\binom{n}{2}1^{n-2}1^2+.....+\binom{n}{n}1^01^n=2^n$
$\binom{n}{0}+\binom{n}{1}+...+\binom{n}{n}=2^n$
We proved the given identity.