## Thinking Mathematically (6th Edition)

$\begin{array}{lllllll} p & q & \sim p & \sim q & p\wedge\sim q & \sim p\wedge q & ( p\wedge\sim q)\vee(\sim p\wedge q)\\ \hline T & T & F & F & F & F & F\\ T & F & F & T & T & F & T\\ F & T & T & F & F & T & T\\ F & F & T & T & F & F & F \end{array}$
Set up a truth table for two inputs, p and q: $\begin{array}{llll} p & q & ... & ...\\ \hline T & T & & \\ T & F & & \\ F & T & & \\ F & F & & \end{array}$ In columns 3 and 4, use the negation table for $\sim p$ and $\sim q$ $\begin{array}{llllll} p & q & \sim p & \sim q & & \\ \hline T & T & F & F & & \\ T & F & F & T & & \\ F & T & T & F & & \\ F & F & T & T & & \end{array}$ Next column: $p\wedge\sim q$ (conjunction, inputs: columns 1 and 4) $\begin{array}{llllll} p & q & \sim p & \sim q & p\wedge\sim q & \\ \hline T & T & F & F & F & \\ T & F & F & T & T & \\ F & T & T & F & F & \\ F & F & T & T & F & \end{array}$ Next column: $\sim p\wedge q$ (conjunction, inputs: columns 3 and 2) $\begin{array}{llllll} p & q & \sim p & \sim q & p\wedge\sim q & \sim p\wedge q\\ \hline T & T & F & F & F & F\\ T & F & F & T & T & F\\ F & T & T & F & F & T\\ F & F & T & T & F & F \end{array}$ Final column: $( p\wedge\sim q)\vee(\sim p\wedge q)$ (disjunction, inputs: columns $5$ and $6$) $\begin{array}{lllllll} p & q & \sim p & \sim q & p\wedge\sim q & \sim p\wedge q & ( p\wedge\sim q)\vee(\sim p\wedge q)\\ \hline T & T & F & F & F & F & F\\ T & F & F & T & T & F & T\\ F & T & T & F & F & T & T\\ F & F & T & T & F & F & F \end{array}$