Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 14 - Graph Theory - 14.4 Trees - Exercise Set 14.4 - Page 930: 15


iii. The described graph may or may not be a tree.

Work Step by Step

iii. The described graph may or may not be a tree. A tree is a graph that is connected and has no circuits. A graph is connected when there is a path between every pair of vertices. One characteristic of a tree is the following: If the graph has $n$ vertices, then the graph has $n-1$ edges. This graph has 5 vertices and 4 edges. Therefore, this graph could be a tree but we can not be sure. It depends how these 4 edges are placed in the graph. It is possible that the edges could be placed in the graph such that a circuit is created and that the graph is not connected.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.