Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 1 - Problem Solving and Critical Thinking - 1.1 Inductive and Deductive Reasoning - Exercise Set 1.1: 71

Answer

a. The sums are all equal to 30. b. The sums are all equal to 36. c. If we choose $a=4$, $b=1$, $c=2$, the sums are all equal to 12. d. We may inductively conclude that all the sums are all equal to $3*a$. e. When we sum up each row, column and diagonal without replacing the variables, we can deductively conclude that all the sums are equal to $3*a$.

Work Step by Step

* The table is provided in the picture * a) $ a + b = 10 + 6 = 16 $ $ a -b-c=10-6-1=3$ $a+c=10+1=11$ Row #1: 16 , 3 , 11 $a-b+c=10-6+1=5$ $a=10$ $a+b-c=10+6-1=15$ Row #2: 5 , 10 , 15 $a-c = 10-1=9$ $a+b+c=10+6+1=17$ $a-b=10-6=4$ Row #3: 9 , 17 , 4 The result table is: 16, 3, 11 5, 10, 15 9, 17, 4 The sums are: Row #1: $16 + 3 + 11 = 30$ Row #2: $5 + 10 + 15 = 30$ Row #3: $9 + 17 + 4 = 30$ Column #1: $16 + 5 + 9 = 30$ Column #3: $3 + 10 + 17 = 30$ Column #3: $11 + 15 + 4 = 30$ Diagonal #1: $16 + 10 + 4 = 30$ Diagonal #2: $9 + 10 + 11 = 30$ We observe that all the sums are equal to 30. b. repeat part (a) for $a=12$, $b=5$, and $c=2$. $ a + b = 12 + 5 = 17 $ $ a -b-c=12-5-2=5$ $a+c=12+2=14$ Row #1: 17 , 5 , 14 $a-b+c=12-5+2=9$ $a=12$ $a+b-c=12+5-2=15$ Row #2: 9 , 12 , 15 $a-c = 12-2=10$ $a+b+c=12+5+2=19$ $a-b=12-5=7$ Row #3: 10 , 19 , 7 The result table is: 17, 5, 14 9, 12, 15 10, 19, 7 The sums are: Row #1: $17 + 5 + 14 = 36$ Row #2: $9 + 12 + 15 = 36$ Row #3: $10 + 19 + 7 = 36$ Column #1: $17 + 9 + 10 = 36$ Column #2: $5 + 12 + 19 = 36$ Column #3: $14 + 15 + 7 = 36$ Diagonal #1: $17 + 12 + 7 = 36$ Diagonal #2: $10+ 12 + 14 = 36$ We observe that all the sums are equal to 36. c. repeat part (a) for values $a$, $b$, and $c$ of your choice. $a = 4$, $b = 1$, $c = 2$ $ a + b = 4+1 = 5 $ $ a -b-c=4-1-2=1$ $a+c=4+2=6$ Row #1: 5 , 1 , 6 $a-b+c=4-1+2=5$ $a=4$ $a+b-c=4+1-2=3$ Row #2: 5 , 4 , 3 $a-c = 4-2=2$ $a+b+c=4+1+2=7$ $a-b=4-1=3$ Row #3: 2 , 7 , 3 The result table is: 5, 1, 6 5, 4, 3 2, 7, 3 The sums are: Row #1: $5 +1+6 = 12$ Row #2: $5+4+3 = 12$ Row #3: $2+7+3 = 12$ Column #1: $5+5+2 = 12$ Column #2: $1+4+7 = 12$ Column #3: $6+3+3 = 12$ Diagonal #1: $5+4+3= 12$ Diagonal #2: $2+4+6= 12$ We observe that all the sums are equal to 12. d. We may inductively conclude that they are all equal to $a*3$ e. If we sum up each row, column and diagonal without replacing the variables, we can get the results in variable form, which could deductively prove our conjecture. Row #1: $a+b+a-b-c+a+c=a+a+a=3a$ Row #2: $a-b+c+a+a+b-c=a+a+a=3a$ Row #3: $a-c+a+b+c+a-b=a+a+a=3a$ Column #1: $a+b+a-b+c+a-c=a+a+a=3a$ Column #2: $a-b-c+a+a+b+c=a+a+a=3a$ Column #2: $a+c+a+b-c+a-b=a+a+a=3a$ Diagonal #1: $a+b+a+a-b=a+a+a=3a$ Diagonal #2: $a-c+a+a+c=a+a+a=3a$ We used deductive reasoning to prove that all the sums are equal to $3a$.
Small 1496433471
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.