Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.4 - Page 439: 7

Answer

See explanation

Work Step by Step

First, recall the piecewise definition given in Example 7.4.2 (slightly re‐labeled here for clarity): \[ F(n)\;=\; \begin{cases} \dfrac{n}{2}, & \text{if \(n\) is even},\\[6pt] -\dfrac{n-1}{2}, & \text{if \(n\) is odd}. \end{cases} \] ### (a) Checking the values for \(n=1,2,3,4\) - **\(n=1\) (odd):** \(F(1) = -\tfrac{1-1}{2} = -0 = 0.\) - **\(n=2\) (even):** \(F(2) = \tfrac{2}{2} = 1.\) - **\(n=3\) (odd):** \(F(3) = -\tfrac{3-1}{2} = -1.\) - **\(n=4\) (even):** \(F(4) = \tfrac{4}{2} = 2.\) These match the intended pattern \(0,1,-1,2,\dots\), as described in the example. --- ### (b) A Single Formula Using the Floor Function Notice that \[ \left\lfloor \frac{n}{2} \right\rfloor \;=\; \begin{cases} \tfrac{n}{2}, & \text{if \(n\) is even},\\ \tfrac{n-1}{2}, & \text{if \(n\) is odd}. \end{cases} \] Moreover, \((-1)^n\) is \(+1\) for even \(n\) and \(-1\) for odd \(n\). Putting these observations together gives a compact, single‐expression formula: \[ \boxed{F(n) \;=\; (-1)^n \,\bigl\lfloor \tfrac{n}{2} \bigr\rfloor.} \] - For **even** \(n\), \(\lfloor n/2 \rfloor = n/2\) and \((-1)^n = +1\), so \(F(n) = n/2\). - For **odd** \(n\), \(\lfloor n/2 \rfloor = (n-1)/2\) and \((-1)^n = -1\), so \(F(n) = -\,(n-1)/2.\) This exactly matches the original piecewise definition.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.