Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 7 - Functions - Exercise Set 7.1 - Page 396: 48

Answer

Yes. The equality \[ F^{-1}(C - D) \;=\; F^{-1}(C) \;-\; F^{-1}(D) \] holds for **all** functions \(F\) and **all** subsets \(C, D \subseteq Y\).

Work Step by Step

For a function \(F: X \to Y\) and subsets \(C, D \subseteq Y\), determine whether the following equality always holds: \[ F^{-1}(C - D) \;=\; F^{-1}(C) \;-\; F^{-1}(D). \] --- ## Proof Recall the definitions: \(C - D = \{\,y \in Y : y \in C \text{ and } y \notin D\}\). \(F^{-1}(S) = \{\,x \in X : F(x) \in S\}\) for any \(S \subseteq Y\). \(A - B = \{\,x \in A : x \notin B\}\). We must show two set inclusions to establish equality: 1. **\(\subseteq\) Direction** - Take any \(x \in F^{-1}(C - D)\). - By definition, \(F(x) \in C - D\), meaning \(F(x) \in C\) **and** \(F(x) \notin D\). - Consequently, \(x \in F^{-1}(C)\) and \(x \notin F^{-1}(D)\). - Hence \(x \in F^{-1}(C) - F^{-1}(D)\). - This shows \(F^{-1}(C - D) \subseteq F^{-1}(C) - F^{-1}(D)\). 2. **\(\supseteq\) Direction** - Take any \(x \in F^{-1}(C) - F^{-1}(D)\). - Then \(x \in F^{-1}(C)\) (so \(F(x) \in C\)) and \(x \notin F^{-1}(D)\) (so \(F(x) \notin D\)). - Therefore \(F(x)\) lies in \(C\) but not in \(D\), i.e., \(F(x) \in C - D\). - Hence \(x \in F^{-1}(C - D)\). - This shows \(F^{-1}(C) - F^{-1}(D) \subseteq F^{-1}(C - D)\). Since both inclusions hold, the two sets are equal: \[ F^{-1}(C - D) \;=\; F^{-1}(C) \;-\; F^{-1}(D). \] --- ## Conclusion The property \[ F^{-1}(C - D) = F^{-1}(C) - F^{-1}(D) \] is **always true** for any function \(F: X \to Y\) and any subsets \(C, D \subseteq Y\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.