Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.3 - Page 372: 14

Answer

$For\,\,all\,\,sets\,\,A,\,B,\,\,and\,C\,\,\\ if\,\,A \cap C \subseteq B \cap C\,\,and\,A \cup C \subseteq B \cup C\,\,\\ then\,\,A \subseteq B.\\ this\,\,is\,\,true:\\ proof:\\ x\in A \Rightarrow x\in C \,or\, x\notin C \\ first\,\,case\,\,(x\in A\,\,and\,\,x\in C)\\ x\in A\,\,and\,\,x\in C\Rightarrow x\in A\cap C \\ \because A \cap C \subseteq B \cap C \\ \therefore x\in A\cap C\Rightarrow x\in B \cap C\Rightarrow x\in B \\ second\,\,case\,\,:(x\in A \,\,and\,\,x\notin C)\\ x\in A \,\,and\,\,x\notin C \Rightarrow x\in A\cup C \\ \because A \cup C \subseteq B \cup C \\ \therefore x\in B\cup C\Rightarrow x\in B \,\,(as\,\,x\notin C) \\ so\,\,in\,\,both\,\,cases\,\,:\\ x\in A \Rightarrow x\in B \\ \therefore A\subseteq B $

Work Step by Step

$For\,\,all\,\,sets\,\,A,\,B,\,\,and\,C\,\,\\ if\,\,A \cap C \subseteq B \cap C\,\,and\,A \cup C \subseteq B \cup C\,\,\\ then\,\,A \subseteq B.\\ this\,\,is\,\,true:\\ proof:\\ x\in A \Rightarrow x\in C \,or\, x\notin C \\ first\,\,case\,\,(x\in A\,\,and\,\,x\in C)\\ x\in A\,\,and\,\,x\in C\Rightarrow x\in A\cap C \\ \because A \cap C \subseteq B \cap C \\ \therefore x\in A\cap C\Rightarrow x\in B \cap C\Rightarrow x\in B \\ second\,\,case\,\,:(x\in A \,\,and\,\,x\notin C)\\ x\in A \,\,and\,\,x\notin C \Rightarrow x\in A\cup C \\ \because A \cup C \subseteq B \cup C \\ \therefore x\in B\cup C\Rightarrow x\in B \,\,(as\,\,x\notin C) \\ so\,\,in\,\,both\,\,cases\,\,:\\ x\in A \Rightarrow x\in B \\ \therefore A\subseteq B $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.