Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 6 - Set Theory - Exercise Set 6.2 - Page 365: 21

Answer

The mistake is assuming that $x \notin A \text{ or } x \notin B \Rightarrow x \notin A \cup B$. This is false. The inclusion $A^c \cup B^c \subseteq (A \cup B)^c$ is not always true. Instead, De Morgan’s law tells us: \[ \boxed{(A \cup B)^c = A^c \cap B^c} \] So the direction should be: \[ (A \cup B)^c \subseteq A^c \cup B^c \quad \text{(False)} \\ (A \cup B)^c \subseteq A^c \cap B^c \quad \text{(True)} \]

Work Step by Step

The theorem being “proven” is: For all sets \(A\) and \(B\), \[ A^c \cup B^c \subseteq (A \cup B)^c \] We are asked to find the **mistake** in the given "proof." --- ## ✅ Step 1: What’s Actually True? This identity is **not true in general**. In fact, the **opposite** direction holds: \[ \boxed{(A \cup B)^c = A^c \cap B^c} \] Thus, by De Morgan’s laws: \[ A^c \cup B^c \supseteq (A \cup B)^c \] **So the claim \(A^c \cup B^c \subseteq (A \cup B)^c\)** is **false**, meaning the whole proof is trying to prove a false statement. --- ## ❌ Step 2: What's the mistake in the proof? Let’s summarize the flawed logic: 1. Let \(x \in A^c \cup B^c\) 2. Then \(x \in A^c\) or \(x \in B^c\) 3. So \(x \notin A\) or \(x \notin B\) 4. Therefore \(x \notin A \cup B\) 5. So \(x \in (A \cup B)^c\) The mistake is in step 4: > From “\(x \notin A\) or \(x \notin B\)” ⇒ conclude “\(x \notin A \cup B\)” This is **not valid** logic! --- ### ❌ Why it's wrong: Let’s take a counterexample. Let: - \(A = \{1\}\) - \(B = \{2\}\) - Universal set \(U = \{1, 2, 3\}\) Then: - \(A^c = \{2, 3\}\) - \(B^c = \{1, 3\}\) - \(A^c \cup B^c = \{1, 2, 3\} = U\) - \((A \cup B)^c = \{3\}\) So: \[ A^c \cup B^c = U \nsubseteq \{3\} = (A \cup B)^c \] **Counterexample disproves the theorem**, and shows that the proof uses **invalid logic**. --- ### 🔎 What’s the specific mistake? From: \[ x \notin A \text{ or } x \notin B \] You **cannot** conclude: \[ x \notin A \cup B \] A simple example: - Let \(x = 1\), \(x \in A\), \(x \notin B\) - So \(x \notin B\) is true ⇒ \(x \in B^c\) - But \(x \in A\) ⇒ \(x \in A \cup B\) - So \(x \notin A \cup B\) is **false** This proves that the step: > "If \(x \in A^c\) or \(x \in B^c\), then \(x \notin A \cup B\)" is **logically invalid**.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.