Answer
a. \( x \notin A \cup B \) if, and only if, \( x \notin A \) and \( x \notin B \).
b. \( x \notin A \cap B \) if, and only if, \( x \notin A \) or \( x \notin B \).
c. \( x \notin A - B \) if, and only if, \( x \in B \) or \( x \notin A \).
Work Step by Step
We use the definitions to complete the sentences:
a. \( x \notin A \cup B \) if, and only if, \( x \notin A \) and \( x \notin B \).
b. \( x \notin A \cap B \) if, and only if, \( x \notin A \) or \( x \notin B \).
c. \( x \notin A - B \) if, and only if, \( x \in B \) or \( x \notin A \).