Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 2 - The Logic of Compound Statements - Exercise Set 2.4 - Page 77: 34

Answer

See explanation

Work Step by Step

a) \begin{align*} P \downarrow P &\equiv\sim(P\vee P)&&\text{by definition of } \downarrow\\ &\equiv \sim P && \text{by idempotent law over } \vee \end{align*} b) \begin{align*} (P\downarrow Q)\downarrow(Q\downarrow P)&\equiv\sim(P\vee Q)\downarrow\sim(Q\vee P)&&\text{by definition of } \downarrow\\ &\equiv \sim(P\vee Q)\downarrow\sim(P\vee Q)\equiv\sim[\sim(P\vee Q)] && \text{by idempotent law over } \\ &\equiv P\vee Q \end{align*} c) $(P\downarrow P)\downarrow(Q\downarrow Q)\equiv\sim P\downarrow \sim Q\equiv\sim(\sim P\vee\sim Q)\equiv\sim(\sim P)\land\sim(\sim Q)\equiv P\land Q$ d) $P\rightarrow Q\equiv\sim P\vee Q\equiv(P\downarrow P)\vee Q\equiv\sim[\sim((P\downarrow P)\vee Q)] \equiv \sim[(P\downarrow P) \downarrow Q] \equiv [(P\downarrow P) \downarrow Q] \downarrow [(P\downarrow P) \downarrow Q]$ e) $P\leftrightarrow Q\equiv (P\rightarrow Q)\land(Q\rightarrow P)\equiv [(P\rightarrow Q)\downarrow (P\rightarrow Q)]\downarrow [(Q\rightarrow P) \downarrow (Q\rightarrow P)] \equiv [[(P\downarrow P)\downarrow Q] \downarrow [(P\downarrow P) \downarrow Q] \downarrow [(P\downarrow P) \downarrow Q] \downarrow [(P\downarrow P) \downarrow Q]] \downarrow [[(Q\downarrow Q)\downarrow P] \downarrow [(Q\downarrow Q) \downarrow P] \downarrow [(Q\downarrow Q) \downarrow P] \downarrow [(Q\downarrow Q) \downarrow P]]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.