#### Answer

(0,-1)

#### Work Step by Step

The x values of A and B are -2 and 3, respectively. The distance between these two points on the x-axis is: 3-(-2) = 5. As point C lies $\frac{2}{5}$ of the way from A to B, we can multiply the x-distance of 5 by $\frac{2}{5}$:
5 $\times$ $\frac{2}{5}$ = 2
To determine the x-coordinate, we must add 2 to the x-coordinate of A:
-2 + 2 = 0
Next, we must look at the difference between the y-values of A and B. The y-values of A and B are -3 and 2, respectively. The distance between these two points is 2-(-3) = 5. As point C lies $\frac{2}{5}$ of the way from A to B, we can multiply the y-distance of 5 by $\frac{2}{5}$:
5 $\times$ $\frac{2}{5}$ = 2
To determine the y-coordinate, we must add 2 to the y-coordinate of A:
-3 + 2 = -1.
The x-coordiante is 0 and the y-coordinate is -1.