Elementary Geometry for College Students (7th Edition) Clone

Published by Cengage
ISBN 10: 978-1-337-61408-5
ISBN 13: 978-1-33761-408-5

Chapter 2 - Section 2.1 - The Parallel Postulate and Special Angles - Exercises - Page 88: 23

Answer

PROOF Statements | Reasons 1.) $\overline{CE}$ $\parallel$ $\overline{DF}$; transversal $\overline{AB}$ | 1.) Given 2.) $\angle ACE$ is congruent to $\angle ADF$ | 2.) If two $\parallel$ lines are cut by a transversal, then the corresponding $\angle$s are congruent 3.) $\overline{CX}$ bisects $\angle ACE$; $\overline{DE}$ bisects $\angle CDF$ | 3.) Given 4.) $\angle1$ is congruent to $\angle3$ | 4.) If two $\angle$s are congruent, then their bisectors separate these $\angle$s into four congruent $\angle$s

Work Step by Step

PROOF Statements | Reasons 1.) $\overline{CE}$ $\parallel$ $\overline{DF}$; transversal $\overline{AB}$ | 1.) Given 2.) $\angle ACE$ is congruent to $\angle ADF$ | 2.) If two $\parallel$ lines are cut by a transversal, then the corresponding $\angle$s are congruent 3.) $\overline{CX}$ bisects $\angle ACE$; $\overline{DE}$ bisects $\angle CDF$ | 3.) Given 4.) $\angle1$ is congruent to $\angle3$ | 4.) If two $\angle$s are congruent, then their bisectors separate these $\angle$s into four congruent $\angle$s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.