Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.1 Homogenous Equations with Constant Coefficients - Problems - Page 144: 22

Answer

$$\beta=-1$$

Work Step by Step

$$4y''-y=0,\quad{y}(0)=2,\quad{y'}(0)=\beta$$Let $y=e^{\lambda{t}}$ so that $(\ln{y})'=\lambda$. $$4{\lambda}^2-1=0$$ $$\lambda_{1,2}=\pm\frac{1}{2}$$ The general solution is ${y}=c_{1}e^{\frac{t}{2}}+c_{2}e^{-\frac{t}{2}}$. Substituting in the constraints, we obtain $c_{1}+c_{2}=2$ and $\frac{c_{1}-c_{2}}{2}=\beta\Rightarrow{c}_{1}=2\beta+c_{2}\Rightarrow{c}_{2}=1-\beta\Rightarrow{c}_{1}=\beta+1$ $$\therefore{y}=(\beta+1)e^{\frac{t}{2}}+(1-\beta)e^{-\frac{t}{2}}$$ As $t\rightarrow+\infty$, $e^{-\frac{t}{2}}\rightarrow0$ and $e^{\frac{t}{2}}\rightarrow+\infty\Rightarrow(\beta+1)e^{\frac{t}{2}}\rightarrow+\infty$. Thus, for the solution to approach zero, $\beta+1=0$. $$\therefore\beta=-1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.