Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 40: 29

Answer

Finding the integrating factor: $\mu(t)=\exp(\int 1/4\ dt)$ $\mu(t)=e^{t/4}$ Finding the y-function: $y=\frac{1}{\mu(t)}[\int \mu(s)(3+2\cos 2s)ds+c]$ $y=e^{-t/4}[4/65\ e^{t/4}(16\sin 2t+2\cos 2t+195)+c]$ $y=4/65\ (16\sin 2t+2\cos 2t+195)+ce^{-t/4}$ $y(0)=788/65+c=0\rightarrow c=-788/65$ a) $y=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$ At $t\rightarrow+\infty$, the exponential term goes to zero, so the value will be between a minimum when $\sin(2t)=-1, \cos(2t)=0$ and amaximum when $\sin(2t)=1, \cos(2t)=0$, i.e., $y(t\rightarrow +\infty) \rightarrow [716/65,\ 844/65]$ b) $12=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$ $16\sin 2t+2\cos 2t-197e^{-t/4}=0$ The first solution is $t=10.066$

Work Step by Step

Finding the integrating factor: $\mu(t)=\exp(\int 1/4\ dt)$ $\mu(t)=e^{t/4}$ Finding the y-function: $y=\frac{1}{\mu(t)}[\int \mu(s)(3+2\cos 2s)ds+c]$ $y=e^{-t/4}[4/65\ e^{t/4}(16\sin 2t+2\cos 2t+195)+c]$ $y=4/65\ (16\sin 2t+2\cos 2t+195)+ce^{-t/4}$ $y(0)=788/65+c=0\rightarrow c=-788/65$ a) $y=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$ At $t\rightarrow+\infty$, the exponential term goes to zero, so the value will be between a minimum when $\sin(2t)=-1, \cos(2t)=0$ and amaximum when $\sin(2t)=1, \cos(2t)=0$, i.e., $y(t\rightarrow +\infty) \rightarrow [716/65,\ 844/65]$ b) $12=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$ $16\sin 2t+2\cos 2t-197e^{-t/4}=0$ The first solution is $t=10.066$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.