Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 39: 8

Answer

$y = \dfrac{\tan^{-1}t + C}{(1 + t^2)^2}$

Work Step by Step

$$(1 + t^2)y' + 4ty = (1 + t^2)^{-2}$$ Divide through by ((1 + t^2)): $$y' + \frac{4t}{1 + t^2}y = (1 + t^2)^{-3}$$ We solve this by the integrating factor method: $$\mu(t) = e^{\int P(t),dt}$$ Here, (P(t) = \frac{4t}{1 + t^2}). Therefore, $$\mu(t) = e^{\int \frac{4t}{1 + t^2},dt} = e^{2\ln(1 + t^2)} = (1 + t^2)^2$$ Now, multiplying both sides by (\mu(t)): $$(1 + t^2)^2(y' + \frac{4t}{1 + t^2}y) = (1 + t^2)^2(1 + t^2)^{-3}$$ $$(1 + t^2)^2y' + 4t(1 + t^2)y = (1 + t^2)^{-1}$$ Notice the left-hand side: $$((1 + t^2)^2y)' = (1 + t^2)^{-1}$$ Integrating both sides: $$\int ((1 + t^2)^2y)',dt = \int (1 + t^2)^{-1},dt$$ On the right-hand side: $$\int (1 + t^2)^{-1},dt = \tan^{-1}t + C$$ Therefore: $$(1 + t^2)^2y = \tan^{-1}t + C$$ Dividing both sides by ((1 + t^2)^2): $$y = \frac{\tan^{-1}t + C}{(1 + t^2)^2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.