University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.1 - Sequences - Exercises - Page 488: 81


Converges to $\dfrac{\pi}{2}$

Work Step by Step

Consider $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} tan^{-1} n$ Since, $ \lim\limits_{n \to \dfrac{\pi}{2}} \tan x=\dfrac{\pi}{2}$ So, $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} tan^{-1} n=\dfrac{\pi}{2}$ Hence, $\lim\limits_{n \to \infty} a_n=\dfrac{\pi}{2}$ and {$a_n$} is Convergent and converges to $\dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.