University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Questions to Guide Your Review - Page 551: 10

Answer

See below.

Work Step by Step

Theorem 8 deals with these types of properties for $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{t}$ series: If $\displaystyle \sum_{n=1}^{\infty}a_{n}=A$ and $\displaystyle \sum_{n=1}^{\infty}b_{n}=B$ are convergent series, then 1. Sum Rule: $\displaystyle \sum_{n=1}^{\infty}(a_{n}+b_{n})=\sum_{n=1}^{\infty}a_{n}+\sum_{n=1}^{\infty}b_{n}=A+B.$ 2. Difference Rule: $\displaystyle \sum_{n=1}^{\infty}(a_{n}-b_{n})=\sum_{n=1}^{\infty}a_{n}-\sum_{n=1}^{\infty}b_{n}=A-B.$ 3. Constant Multiple Rule: $\displaystyle \sum_{n=1}^{\infty}ka_{n}=k\sum_{n=1}^{\infty}a_{n}=kA$ for any number $k.$ And, if the series in question are $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{t}$, we have the Corollary to theorem 8: 1. Every nonzero constant multiple of a divergent series diverges. 2. If $\displaystyle \sum_{=1}^{\infty}a_{n}$ converges and $\displaystyle \sum_{n=1}^{\infty}b_{n}$ diverges, then $\displaystyle \sum_{n=1}^{\infty}(a_{n}+b_{n})$ and $\displaystyle \sum_{n=1}^{\infty}(a_{n}-b_{n})$ both diverge.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.