University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.3 - Trigonometric Substitutions - Exercises - Page 439: 17

Answer

$\dfrac{(\sqrt {x^2+4})^3}{3}-4 \sqrt {x^2+4}+C$

Work Step by Step

Let us consider $x = 2 \tan \theta $ and $dx=2 \sec^2 \theta d\theta $ Now, the given integral becomes: $\int \dfrac{8 \tan^3 \theta (2 \sec^2 \theta) }{\sqrt{4 \tan^2 \theta+4}} d \theta =\int \dfrac{1 6\tan^3 \theta (\sec^2 \theta) }{2 \sqrt{(\tan^2 \theta+1})} d \theta =8 \int (\sec^2 d \theta -1) (\sec \theta\tan \theta) d \theta$ Let us suppose $u=\sec \theta \implies du =\sec \theta \theta d\theta $ Thus, we have $8 \int (\sec^2 d \theta -1) (\sec \theta\tan \theta) d \theta=\int 8(u^2-1) du$ Now, integrate and plug in $u=\sec \theta$ $8( \dfrac{u^3}{3}- u)+C=8( \dfrac{\sec^3 \theta}{3}-\sec \theta)+C$ Now, plug in $x = 2 \tan \theta \implies \dfrac{\sin \theta}{\cos \theta} =(x/2)$ and $\sec \theta =(\sqrt{x^2+4})/2 $: Thus, $8( \dfrac{\sec^3 \theta}{3}-\sec \theta)+C=8[\dfrac{(\dfrac{\sqrt {x^2+4}}{2})^3}{3})]-8 \dfrac{\sqrt {x^2+4}}{2}+C$ or, $=\dfrac{(\sqrt {x^2+4})^3}{3}-4 \sqrt {x^2+4}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.