University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.2 - Trigonometric Integrals - Exercises - Page 435: 67

Answer

$$\int x\sin^2xdx=\frac{x^2}{4}-\frac{1}{4}x\sin2x-\frac{1}{8}\cos2x+C$$

Work Step by Step

$$A=\int x\sin^2xdx=\int x\Big(\frac{1-\cos2x}{2}\Big)dx$$ $$A=\frac{1}{2}\int xdx-\frac{1}{2}\int x\cos2xdx$$ $$A=\frac{x^2}{4}-\frac{1}{2}\int x\cos2xdx$$ Set $u= x$ and $dv=\cos2xdx$ We would have $du=dx$ and $v=\frac{1}{2}\sin2x$ Applying Integration by Parts, we have $$A=\frac{x^2}{4}-\frac{1}{2}\Big(\frac{1}{2}x\sin2x-\frac{1}{2}\int\sin2xdx\Big)$$ $$A=\frac{x^2}{4}-\frac{1}{2}\Big(\frac{1}{2}x\sin2x+\frac{1}{4}\cos2x\Big)+C$$ $$A=\frac{x^2}{4}-\frac{1}{4}x\sin2x-\frac{1}{8}\cos2x+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.