University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Practice Exercises - Page 475: 81

Answer

$\dfrac{-2(x+4) \sqrt {2-x}}{3}+C$

Work Step by Step

Using $u$-substitution, we get: $u^2=2-x \implies -dx= 2u \space du$ We integrate the integral as follows: $I=\int \dfrac{(2-u^2)(-2u \space du)}{(u^2)^{1/2}}=\int 2u^2-4 du$ Now, $I=\dfrac{2u^3}{3}-4u+C \\=\dfrac{2(2-x) \sqrt {2-x}}{3}-4 \sqrt {2-x}+C \\=\dfrac{-2(x+4) \sqrt {2-x}}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.