University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 7 - Section 7.3 - Hyperbolic Functions - Exercises - Page 419: 80

Answer

$\pi$

Work Step by Step

We apply the disk method (see graph below) $V=\displaystyle \int_{a}^{b}\pi[R(x)]^{2}dx$ The solid is symmetric, so we take bounds from 0 to $\ln\sqrt{3}$ $ y=2\displaystyle \pi\int_{0}^{\ln\sqrt{3}}{\rm sech}^{2}xdx=\quad$ see the table "Integral formulas for hyperbolic functions" $=2\pi[\tanh x]_{0}^{\ln\sqrt{3}}$ Evaluate using $\displaystyle \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{x}}\qquad\left[\begin{array}{l} \tanh 0=\frac{1-1}{1+1}=0\\ \\ \tanh(\ln\sqrt{3})=\dfrac{\sqrt{3}-\dfrac{1}{\sqrt{3}}}{\sqrt{3}+\dfrac{1}{\sqrt{3}}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\dfrac{3-1}{3+1}=\dfrac{1}{2} \end{array}\right]$ $=2\displaystyle \pi[\frac{1}{2}-0]$ $=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.