University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 6 - Section 6.2 - Volumes Using Cylindrical Shells - Exercises - Page 364: 17


$$\dfrac{8 \pi}{3}$$

Work Step by Step

Consider the shell model to compute the volume: $$Volume=\int_{m}^{n} (2 \pi) (\space Radius \space of \space shell) \times ( height \space \text{of} \space \text {shell}) dx \\= \int_{0}^{2} (2 \pi) \cdot y (2y-y^2) dy \\ =2 \pi (\dfrac{2y^3}{3}-\dfrac{y^4}{4})_{0}^{2} \\= [\dfrac{16(2 \pi) }{3}-4(2 \pi)] \\=\dfrac{8 \pi}{3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.