University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.7 - Implicit Differentiation - Exercises - Page 166: 62

Answer

The tangent line to the curve at $P(\frac{\pi}{4},0)$ is $$y=-x+\frac{\pi}{4}$$

Work Step by Step

$$xy^3+\tan(x+y)=1$$ The graph of the curve is enclosed below. a) As the point $(\frac{\pi}{4},0)$ lies in the curve, $P$ satisfies the equation. b) Find $dy/dx$ using implicit differentiation: $$(y^3+3xy^2\frac{dy}{dx})+\sec^2(x+y)\frac{d}{dx}(x+y)=0$$ $$y^3+3xy^2\frac{dy}{dx}+\sec^2(x+y)(1+\frac{dy}{dx})=0$$ $$y^3+3xy^2\frac{dy}{dx}+\sec^2(x+y)+\sec^2(x+y)\frac{dy}{dx}=0$$ $$\frac{dy}{dx}(3xy^2+\sec^2(x+y))=-(y^3+\sec^2(x+y))$$ $$\frac{dy}{dx}=-\frac{y^3+\sec^2(x+y)}{3xy^2+\sec^2(x+y)}$$ - For $P(\frac{\pi}{4},0)$: $$\frac{dy}{dx}=-\frac{0^3+\sec^2(\frac{\pi}{4}+0)}{3\times\frac{\pi}{4}\times0^2+\sec^2(\frac{\pi}{4}+0)}=-\frac{\sec^2\frac{\pi}{4}}{0+\sec^2\frac{\pi}{4}}=-1$$ c) The tangent line to the curve at $P(\frac{\pi}{4},0)$ is $$y-0=-(x-\frac{\pi}{4})$$ $$y=-x+\frac{\pi}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.