University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 3 - Section 3.7 - Implicit Differentiation - Exercises - Page 164: 25


$$\frac{dy}{dx}=\frac{1}{y^{-1/2}+1}$$ $$\frac{d^2y}{dx^2}=\frac{y^{-3/2}}{2(y^{-1/2}+1)^3}$$

Work Step by Step

$$2\sqrt y=x-y$$ $$2y^{1/2}=x-y$$ 1) Find $dy/dx$: Differentiate both sides of the equation with respect to $x$: $$\frac{d}{dx}(2y^{1/2})=\frac{d}{dx}(x)-\frac{d}{dx}(y)$$ $$2\times\frac{1}{2}y^{-1/2}\frac{dy}{dx}=1-\frac{dy}{dx}$$ $$y^{-1/2}\frac{dy}{dx}=1-\frac{dy}{dx}$$ Isolate the terms with $dy/dx$ into one side and solve for $dy/dx$: $$y^{-1/2}\frac{dy}{dx}+\frac{dy}{dx}=1$$ $$(y^{-1/2}+1)\frac{dy}{dx}=1$$ $$\frac{dy}{dx}=\frac{1}{y^{-1/2}+1}$$ 2) Find $d^2y/dx^2$: Differentiate the derivative $dy/dx$ as normal, using Quotient Rule: $$\frac{d^2y}{dx^2}=\frac{d}{dx}\Big(\frac{1}{y^{-1/2}+1}\Big)=\frac{-1\frac{d}{dx}(y^{-1/2}+1)}{(y^{-1/2}+1)^2}=\frac{-\Big(-\frac{1}{2}y^{-3/2}\frac{dy}{dx}\Big)}{(y^{-1/2}+1)^2}$$ $$\frac{d^2y}{dx^2}=\frac{y^{-3/2}\frac{dy}{dx}}{2(y^{-1/2}+1)^2}$$ Now we can use the result $dy/dx=1/(y^{-1/2}+1)$ from part 1) to do substitution here: $$\frac{d^2y}{dx^2}=\frac{\frac{y^{-3/2}}{y^{-1/2}+1}}{2(y^{-1/2}+1)^2}=\frac{y^{-3/2}}{2(y^{-1/2}+1)^3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.