University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.5 - Continuity - Exercises - Page 95: 46

Answer

For $g(x)$ to be continuous at every $x$, $b=0$ or $b=-2$.

Work Step by Step

$g(x)=\frac{x-b}{b+1}$ for $x\lt0$ and $g(x)=x^2+b$ for $x\gt0$ For $g(x)$ to be continuous at every x, $g(x)$ must be continuous at every point on its interval, which is $(-\infty,0)\cup(0,\infty)$ We would examine 3 intervals: - For all $x\in(−\infty,0)$, $g(x)=\frac{x-b}{b+1}$, and $$\lim_{x\to c}\frac{x-b}{b+1}=\frac{c-b}{b+1}=f(c)$$ So $g(x)$ is continuous on $(−\infty,0)$ - For all $x\in(0,\infty)$, $g(x)=x^2+b$, and $$\lim_{x\to c}(x^2+b)=c^2+b=f(c)$$ So $g(x)$ is continuous on $(0,\infty)$ - For $x=0$: As $x\to0^-$, $g(x)=\frac{x-b}{b+1}$, so $$\lim_{x\to0^-}g(x)=\lim_{x\to0^-}\frac{x-b}{b+1}=\frac{0-b}{b+1}=-\frac{b}{b+1}$$ As $x\to0^+$, $g(x)=x^2+b$, so $$\lim_{x\to0^+}g(x)=\lim_{x\to0^+}(x^2+b)=0^2+b=b$$ For $g(x)$ to be continuous at $x=0$, $\lim_{x\to0}g(x)$ must exist, which requires that $$\lim_{x\to0^+}g(x)=\lim_{x\to0^-}g(x)$$ $$-\frac{b}{b+1}=b$$ $$b+\frac{b}{b+1}=0$$ $$b\Big(1+\frac{1}{b+1}\Big)=0$$ $$b=0\hspace{1cm}\text{or}\hspace{1cm}1+\frac{1}{b+1}=0$$ $$b=0\hspace{1cm}\text{or}\hspace{1cm}\frac{1}{b+1}=-1$$ $$b=0\hspace{1cm}\text{or}\hspace{1cm}b+1=-1$$ $$b=0\hspace{1cm}\text{or}\hspace{1cm}b=-2$$ In conclusion, for $g(x)$ to be continuous at every $x$, $b=0$ or $b=-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.