University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Questions to Guide Your Review - Page 110: 6

Answer

There are theorems to calculate limits, which are detailed in the Work step by step below.

Work Step by Step

There are 5 theorems to calculate limits. 1) Theorem 1: Limit Laws Suppose that $\lim_{x\to c}f(x)=L$ and $\lim_{x\to c}g(x)=M$ - Sum Rule: $\lim_{x\to c}(f(x)+g(x))=L+M$ $\lim_{x\to c}(2+3x)=\lim_{x\to c}2+\lim_{x\to c}3x$ - Difference Rule: $\lim_{x\to c}(f(x)-g(x))=L-M$ $\lim_{x\to c}(2-3x)=\lim_{x\to c}2-\lim_{x\to c}3x$ - Constant Multiple Rule: $\lim_{x\to c}(kf(x))=kL$ $\lim_{x\to c}3x=3\lim_{x\to c}x$ - Product Rule: $\lim_{x\to c}(f(x)g(x))=LM$ $\lim_{x\to c}(6x)=\lim_{x\to c}6\times\lim_{x\to c}x$ - Quotient Rule: $\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{L}{M}$ $(M\ne0)$ $\lim_{x\to c}\frac{x^2-1}{x+2}=\frac{\lim_{x\to c}(x^2-1)}{\lim_{x\to c}(x+2)}$ - Power Rule: $\lim_{x\to c}[f(x)]^n=L^n$ ($n$ is a positive integer) $\lim_{x\to c}16x^2=(\lim_{x\to c}4x)^2$ - Root Rule: $\lim_{x\to c}\sqrt[n]{f(x)}=\sqrt[n]L$ ($n$ is a positive integer and if $n$ is even, we assume $L\gt0$) $\lim_{x\to c}\sqrt[3]{4x^2}=\sqrt[3]{\lim_{x\to c}4x^2}$ 2) Theorem 2: Limits of Polynomials If $P(x)=a_nx^{n}+a_{n-1}x^{n-1}+...+a_0$ then $\lim_{x\to c}P(x)=P(c)=a_nc^n+a_{n-1}c^{n-1}+...+a_0$ - Take this example: $$\lim_{x\to2}(x^3-2x^2+5x+1)=2^3-2\times2^2+5\times2+1=11$$ 3) Theorem 3: Limits of Rational Functions If $P(x)$ and $Q(x)$ are polynomials and $Q(c)\ne0$, then $\lim_{x\to c}\frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}$ $$\lim_{x\to 2}\frac{x^3+7}{x^2-1}=\frac{2^3+7}{2^2-1}=\frac{15}{3}=5$$ 4) Theorem 4: Sandwich Theorem Suppose $f(x)\le g(x)\le h(x)$ for all $x$ in an open interval containing $c$, but not necessarily at $x=c$. And suppose that $\lim_{x\to c}f(x)=\lim_{x\to c}h(x)=L$. Then $\lim_{x\to c}g(x)=L$ - Example: Find $\lim_{x\to 0}x\sin x$ Since $-x\le x\sin x\le x$ and $\lim_{x\to 0}-x=\lim_{x\to 0}x=0$, we conclude that $\lim_{x\to 0}x\sin x=0$ according to Sandwich Theorem. 5) Theorem 5: If $f(x)\le g(x)$ for all $x$ in some open interval containing $c$, but not necessarily at $c$, and $\lim_{x\to c}f(x)$ and $\lim_{x\to c}g(x)$ both exist, then $\lim_{x\to c}f(x)\le\lim_{x\to c}g(x)$ - Example: We know that $x\le|x|$ for all $x$ So $\lim_{x\to c}x\le\lim_{x\to c}|x|$ for all $x$ as well.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.