University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Additional and Advanced Exercises - Page 113: 8

Answer

The proof is detailed in the Work step by step below.

Work Step by Step

$$g(x)=\frac{1}{2x}\hspace{1cm}c=\frac{1}{4}$$ For $g$ to be continuous at $c=1/4$, $\lim_{x\to 1/4}g(x)=g(1/4)=\frac{1}{2\times\frac{1}{4}}=\frac{1}{\frac{1}{2}}=2$ In other words, we need to prove that $\lim_{x\to 1/4}g(x)=2$. According to the formal definition of limit, for any values of $\epsilon\gt0$, there must exist a corresponding value of $\delta\gt0$ such that for all $x$, $$0\lt|x-1/4|\lt\delta\Rightarrow|g(x)-2|\lt\epsilon$$ Examining the inequality: $$|g(x)-2|\lt\epsilon$$ $$|\frac{1}{2x}-2|\lt\epsilon$$ $$-\epsilon\lt\frac{1}{2x}-2\lt\epsilon$$ $$2-\epsilon\lt \frac{1}{2x}\lt2+\epsilon$$ $$\frac{1}{2-\epsilon}\gt 2x\gt\frac{1}{2+\epsilon}$$ $$\frac{1}{4-2\epsilon}\gt x\gt\frac{1}{4+2\epsilon}$$ So if $x\in(\frac{1}{4+2\epsilon},\frac{1}{4-2\epsilon})$ then $|g(x)-2|\lt\epsilon$ Take $\delta$ to be the distance from $c=1/4$ to the nearer endpoint of $(\frac{1}{4+2\epsilon},\frac{1}{4-2\epsilon})$, or $\delta=\min(1/4-\frac{1}{4+2\epsilon},\frac{1}{4-2\epsilon}-1/4)$. If $\delta$ has this value or any smaller values, then because $0\lt|x-1/4|\lt\delta$, $x$ will always lie in the interval $(\frac{1}{4+2\epsilon},\frac{1}{4-2\epsilon})$ so that $|g(x)-2|\lt\epsilon$. Therefore, $\lim_{x\to1/4}g(x)=g(1/4)=2$. $g$ is continuous at $x=1/4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.