University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 16 - Section 16.3 - Applications - Exercises - Page 16-21: 7

Answer

$ |\ln y | -\dfrac{y^2}{2}=\dfrac{x^2}{2} +C$

Work Step by Step

Write the differential equation as: $\dfrac{dy}{dx}=\dfrac{xy}{(1-y^2)x}$ or, $ \dfrac{1-y^2}{y} \ dy = x \ dx$ or, $ \int x \ dx =\int \dfrac{1-y^2}{y} \ dy $ or, $\int \dfrac{1}{y} \ dy -\int y \ dy =\int x dx$ or, $|\ln y | -\dfrac{y^2}{2}=\dfrac{x^2}{2} +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.