Answer
$s(t)=4.91(1-e^{-\frac{(22.36)}{39.92}t} )$
Work Step by Step
$s(t)=\dfrac{v_0 m}{k}(1-e^{-(kt/m)} )$
Since, $\dfrac{v_0 m}{k}=4.91$
With the given data, we have:
$\dfrac{(275) \times (39.92)}{k}=4.91$
This yields: $ k \approx 22.36$
$s(t)=\dfrac{v_0 m}{k}(1-e^{-(kt/m)} ) \\ =4.91(1-e^{-(22.36)t/39.92} ) \\ =4.91(1-e^{-\frac{(22.36)}{39.92}t} )$