Answer
$x \ln x-x+\tan (x+y)+\dfrac{\ln{(y^2+z^2)}}{2}+C$
Work Step by Step
Here, $f=[ \ln x +\sec^2 (x+y)]i +(\sec^2 (x+y) +\dfrac{y}{y^2+z^2}) j+(\dfrac{z}{y^2+z^2}) k$
This implies that
$F=[x \ln x-x+\tan (x+y)]i +(\tan (x+y) +\dfrac{\ln{y^2+z^2}}{2}) j+(\dfrac{\ln{y^2+z^2}}{2}) k$
Hence, $F=x \ln x-x+\tan (x+y)+\dfrac{\ln{(y^2+z^2)}}{2}+C$