University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 15 - Practice Exercises - Page 910: 39



Work Step by Step

Applying Stoke's Theorem, we have $\oint F \cdot dr=\iint _S (\nabla \times F) \cdot n d\sigma$ Here, $n=\dfrac{2}{7}i+\dfrac{6}{7}j-\dfrac{3}{7}k$ and $d \sigma=\dfrac{7dA}{3}$ Then, we have $\iint _S (\nabla \times F) \cdot n d\sigma=\iint _{R} (\dfrac{6}{7} y)(\dfrac{7dA}{3}) $ This implies that $\int_0^{2 \pi} \int_0^{1} 2r \sin \theta r dr d \theta=\int_0^{2 \pi} \dfrac{2}{3} \sin \theta d \theta $ Thus, $\dfrac{2}{3}(0-0)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.