University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Section 14.5 - Triple Integrals in Rectangular Coordinates - Exercises - Page 786: 19

Answer

$$\dfrac{1}{2}-\dfrac{\pi}{8}$$

Work Step by Step

Our aim is to integrate the integral as follows: $$\int^{\pi/4}_0 \int^{\ln \sec v}_0 \int^{2t}_{-\infty} e^x \space dx \space dt \space dv=\int^{\pi/4}_0 \int^{\ln (\sec v)}_0 \lim\limits_{b \to -\infty}(e^{2t}-e^b) \space dt dv \\=\int^{\pi/4}_0 \int^{\ln \sec v}_0 e^{2t} dt \space dv\\=\int^{\pi/4}_0 (\dfrac{1}{2}e^{2 \ln \sec v}-\dfrac{1}{2})dv \\=\int^{\pi/4}_0 (\dfrac{sec^2}{v}-\dfrac{1}{2})dv \\ [\dfrac{\tan (v) }{2}-\dfrac{v}{2}]^{\pi/4}_0 \\=\dfrac{1}{2}-\dfrac{\pi}{8}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.