University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 14 - Section 14.4 - Double Integrals in Polar Form - Exercises - Page 779: 47

Answer

$\dfrac{8}{9} (3\pi-4)$

Work Step by Step

We evaluate the double integral as follows: $ \iint{R} \sqrt {x^2+y^2} \ dA=\int^{0}_{\pi} \int_{2 \ sin\theta}^2{2} \ r \ r dr \ d\theta$ or, $=\int_{0}^{\pi} \int_{2 \ sin\theta}^2 (r^2 dr) \ d\theta $ or, $=\int_{0}^{\pi} [\dfrac{r^3}{3}]_{2 \sin\theta}^2 \space d\theta $ or, $=\int_{0}^{\pi} [\dfrac{8}{3}-\dfrac{8}{3} \sin^3 \theta] \ d\theta $ or, $=(\dfrac{8}{3})\int_{0}^{\pi} (1- \sin^3 \theta) \ d \theta $ or, $=(\dfrac{8}{3}) [\theta +\cos \theta -\dfrac{1 }{3} \times \cos^3 \theta]_0^{\pi}$ or, $=\dfrac{8}{3}\times (\pi-\dfrac{4}{3})$ or, $=\dfrac{8}{9} (3\pi-4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.