University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.2 - Combining Functions; Shifting and Scaling Graphs - Exercises - Page 21: 77

Answer

- Odd functions: a, b, c, i - Even functions: d, e, f, g, h

Work Step by Step

1) Recall that: - If $f$ is an even function, then $f(-x)=f(x)$ - If $g$ is an odd function, then $g(-x)=-g(x)$ $f$ and $g$ are defined on $(-\infty,\infty)$ 2) To know which is odd and which is even, we need to test $f(-x)$ and $g(-x)$. In detail, (a) $fg$ - We check $f(-x)g(-x)$ - Remember again that $f(-x)=f(x)$ and $g(-x)=-g(x)$ - Therefore, $f(-x)g(-x)=f(x)[-g(x)]=-f(x)g(x)=-fg$ So $fg$ is an odd function (defined on $(-\infty,\infty)$) (b) $f/g$ $f(-x)/g(-x)=f(x)/-g(x)=-[f(x)/g(x)]=-f/g$ $f/g$ is an odd function (where $g\ne0$) (c) $g/f$ $g(-x)/f(-x)=-g(x)/f(x)=-[g(x)/f(x)]=-g/f$ $g/f$ is an odd function (where $f\ne0$) (d) $f^2=ff$ $f(-x)f(-x)=f(x)f(x)=ff=f^2$ $f^2$ is an even function. (e) $g^2=gg$ $g(-x)g(-x)=-g(x)[-g(x)]=g(x)g(x)=gg=g^2$ $g^2$ is an even function. (f) $f\circ g$ $f(-x)\circ g(-x)=f(-g(-x))=f(-(-g(x)))=f(g(x))=(f\circ g)(x)=f\circ g$ $f\circ g$ is an even function. (g) $g\circ f=(g\circ f)(x)=g(f(x))$ $(g\circ f)(-x)=g(f(-x))=g(f(x)))$ $g\circ f$ is an even function. (h) $f\circ f=(f\circ f)(x)=f(f(x))$ $(f\circ f)(-x)=f(f(-x))=f(f(x)))$ $f\circ f$ is an even function. (i) $g\circ g=(g\circ g)(x)=g(g(x))$ $(g\circ g)(-x)=g(g(-x))=g(-g(x)))=-g(g(x))$ (because $g$ is an odd function) $g\circ g$ is an odd function.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.