Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 17 - Second-Order Differential Equations - 17.2 Exercises - Page 1180: 19

Answer

$y=c_1\cos \dfrac{x}{2}+c_2\sin \dfrac{x}{2}-\dfrac{1}{3} \cos x$

Work Step by Step

a) $y_c=c_1\cos \dfrac{x}{2}+c_2\sin \dfrac{x}{2}$ and $y_P=A \cos x+B \sin x$ The given differential equation becomes: $-3A \cos x-3B \sin x=\cos x$ This gives: $A=\dfrac{-1}{3}; B=0$ Then, $y=y_c+y_p=c_1\cos \dfrac{x}{2}+c_2\sin \dfrac{x}{2}-\dfrac{1}{3} \cos x$ b) $y_c=c_1\cos \dfrac{x}{2}+c_2\sin \dfrac{x}{2}$ $y_1=\cos \dfrac{x}{2}; y_2=\sin \dfrac{x}{2}$ $u_1=-\cos \dfrac{x}{2}-\dfrac{2}{3}(\cos \dfrac{x}{2})^3$ and $u_2=\sin \dfrac{x}{2}-\dfrac{2}{3}(\sin \dfrac{x}{2})^3$ Now, $y_p=-\cos \dfrac{x}{2}-\dfrac{2}{3}(\cos \dfrac{x}{2})^3 \cos \dfrac{x}{2}+\sin \dfrac{x}{2}-\dfrac{2}{3}(\sin \dfrac{x}{2})^3\sin \dfrac{x}{2}=-\dfrac{1}{3} \cos x$ Then, $y=y_c+y_p=c_1\cos \dfrac{x}{2}+c_2\sin \dfrac{x}{2}-\dfrac{1}{3} \cos x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.