Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - Review - Exercises - Page 1162: 31

Answer

$\iint_S curl F\cdot dS=\int_C F \cdot dr=0$

Work Step by Step

Apply Stoke's Theorem as: $\iint_S curl F\cdot dS=\int_C F \cdot dr$ We need to write these in the parametric form. we have $x=\cos t, y=\sin t; z=0$; $0 \leq t \leq 2 \pi$ and $r=\lt \cos t , \sin t, 0 \gt $ Then $dr=\lt -\sin t, \cos t ,0 \gt$ $\int_C F \cdot dr=\int_0^{2 \pi} \lt \cos^2 t ,\sin^2 t,0 \gt \cdot \lt -\sin t, \cos t ,0 \gt dt$ or, $\int_C F \cdot dr=\int_0^{2 \pi}- \cos^2 t \sin t dt+\int_0^{2 \pi}\sin^2 t \cos t dt$ Suppose $\cos t=r \implies -\sin t dt =dr$ and $\sin t=s \implies \cos t dt =ds$ $\int_C F \cdot dr=\int_1^{1} r^2 dr+\int_0^{0} s^2 ds=0$ Consider $F=pi+qj+rk$ We know that curl $F=\nabla \times F$ $ curl F=(\dfrac{\partial r}{\partial x}-\dfrac{\partial q}{\partial z}){i}+(\dfrac{\partial p}{\partial z}-\dfrac{\partial r}{\partial x}){j}+(\dfrac{\partial q}{\partial x}-\dfrac{\partial p}{\partial y}){k}$ This implies that curl$F=0$ Thus, $\iint_S curl F\cdot dS=0$ Hence, Stoke's Theorem has been verified. $\iint_S curl F\cdot dS=\int_C F \cdot dr=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.