Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - Review - True-False Quiz - Page 1073: 7

Answer

True

Work Step by Step

In polar coordinates, $D=\{(r,\theta)|0\leq r\leq 2,0\leq \theta\leq 2\pi\}$. Converting to polar coordinates, $\iint_D\sqrt{4-x^2-y^2}dA=\int_0^2\int_0^{2\pi}\sqrt{4-r^2}\cdot rd\theta dr$ $=\int_0^2\int_0^{2\pi}r\sqrt{4-r^2}d\theta dr$ $=\int_0^22\pi r\sqrt{4-r^2}dr$ $=-\frac{2\pi}{3}(4-r^2)^{3/2}]_0^2$ $=0-(-\frac{2\pi}{3}\cdot 8)$ $=\frac{16\pi}{3}$ Then, the statement is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.