Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.7 Exercises - Page 1050: 44

Answer

$I_x= \dfrac{M(b^2+c^2)}{12}$, $I_y= \dfrac{M(a^2+c^2)}{12}$, $I_z= \dfrac{M(a^2+b^2)}{12}$ $M=kabc$

Work Step by Step

We have $I_x=\iiint_{E} (y^2+z^2) \rho(x,y,z) dV=k\int_{-c/2}^{c/2} \int_{-b/2}^{b/2}\int_{-a/2}^{a/2}(y^2+z^2) dx dy dz $ $=k \int_{-c/2}^{c/2} (\dfrac{ay^3}{3}+az^2y)_{-b/2}^{b/2} dz $ $=k \int_{-c/2}^{c/2} (\dfrac{a(b/2+b/2)^3}{3}+az^2(b/2+b/2)dz $ $=(\dfrac{ab^3zk}{12}+\dfrac{abz^3k}{3})_{-c/2}^{c/2}$ $=(\dfrac{ab^3(c/2+c/2)k}{12}+\dfrac{ab(c/2+c/2)^3k}{3})$ $= \dfrac{kabc(b^2+c^2)}{12}$ Suppose $M=kabc$ Then , we get $I_x= \dfrac{M(b^2+c^2)}{12}$ and $I_y= \dfrac{M(a^2+c^2)}{12}$ and $I_z= \dfrac{M(a^2+b^2)}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.