Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.3 Exercises - Page 1020: 32

Answer

$\dfrac{16r^3}{3}$

Work Step by Step

The volume under the surface $z=f(x,y)$ and above the region $D$ in the xy-plane can be expressed as: $$\ Volume =\iint_{D} f(x,y) \space dA$$ We have: $D$ is a circle having radius $r$ with center at the origin and the region $D$ can be defined as: $D=\left\{ (x, y) | -r \leq x \leq r, \ -\sqrt {r^2-x^2} \leq y \leq \sqrt {r^2-x^2} \right\}$ Now, $V=\iint_{D} f(x,y) \ dA \\=2 \int_{-r}^{r} \int_{-\sqrt {r^2-x^2} }^{\sqrt {r^2-x^2} } \sqrt {r^2-y^2} dy \ dx \\ = 2\int_{-r}^{r} [\dfrac{r}{2} \sqrt {r^2-y^2}+\dfrac{r^2}{2} \sin^{-1} (\dfrac{y}{r}) ]_{-\sqrt {r^2-x^2} }^{\sqrt {r^2-x^2} } dx \\ =4 \times \int_{0}^{r}x \sqrt {r^2-x^2} +r^2 \cos^{-1} (x/r) \ dx \\=\dfrac{4}{3} r^3+4r^3\\=\dfrac{16r^3}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.