Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.3 Exercises - Page 1019: 9

Answer

$$ \iint \limits_{D} xd A=\pi$$

Work Step by Step

Given $$ \iint \limits_{D} xd A$$ $$D=\{(x, y) |0\leq x \leq \pi,0\leq y \leq sinx\}$$ So, we have \begin{aligned} A&=\iint \limits_{D} x \ d A\\ &=\int_{0}^{\pi} \int_{0}^{sinx} x \ d y \ d x\\ &=\int_{0}^{\pi} x\left[ y\right]_{0}^{sinx} \ d x\\& = \int_{0}^{\pi}x sinx \ d x\\ \end{aligned} So, by the partition technique, let $$u=x \Rightarrow du= dx$$ $$dv=\sin x \ dx \Rightarrow v= - \cos x $$ So, we get \begin{aligned} I &=\left[uv \right]_{0}^{\pi}- \int_{0}^{pi} vdu\\ & =\left[-x \cos x \right]_{0}^{\pi}+ \int_{0}^{\pi} \cos x \ d x\\ &=\left[-x \cos x \right]_{0}^{\pi}+\left[ \sin x \right]_{0}^{\pi} \\ &=\left[-\pi \cos\pi -0\right]+\left[ \sin \pi -\sin 0 \right] \\ &= \pi \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.