Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.8 Exercises - Page 987: 9

Answer

Maximum:$f( \sqrt2,1,\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,-\sqrt{\dfrac{2}{3}})=f(- \sqrt2,1,-\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,-\sqrt{\dfrac{2}{3}})= {\dfrac{2}{\sqrt 3}}$, Minimum: $f( \sqrt2,1,-\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,\sqrt{\dfrac{2}{3}})=f(- \sqrt2,1,\sqrt{\dfrac{2}{3}})=f( -\sqrt2,-1,-\sqrt{\dfrac{2}{3}})=- {\dfrac{2}{\sqrt 3}}$ or, Maximum: $ {\dfrac{2}{\sqrt 3}}$ and minimum: $- {\dfrac{2}{\sqrt 3}}$

Work Step by Step

Use Lagrange Multipliers Method: $\nabla f(x,y,z)=\lambda \nabla g(x,y,z)$ This yields $\nabla f=\lt y^2z,2xyz,xy^2 \gt$ and $\lambda \nabla g=\lambda \lt 2x,2y,2z\gt$ Using the constraint condition $x^2+y^2+z^2=4$ we get, $y^2z=\lambda 2x, 2xyz=\lambda 2y,xy^2=\lambda 2z$ After solving, we get $x^2=z^2$ and $y^2=2z^2$ Since, $g(x,y)=x^2+y^2+z^2=4$ gives $z=\pm 1$ Thus, $x=\pm 1$ and $y=\pm \sqrt2$ Hence, Maximum:$f( \sqrt2,1,\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,-\sqrt{\dfrac{2}{3}})=f(- \sqrt2,1,-\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,-\sqrt{\dfrac{2}{3}})= {\dfrac{2}{\sqrt 3}}$, Minimum: $f( \sqrt2,1,-\sqrt{\dfrac{2}{3}})=f( \sqrt2,-1,\sqrt{\dfrac{2}{3}})=f(- \sqrt2,1,\sqrt{\dfrac{2}{3}})=f( -\sqrt2,-1,-\sqrt{\dfrac{2}{3}})=- {\dfrac{2}{\sqrt 3}}$ or, Maximum: $ {\dfrac{2}{\sqrt 3}}$ and minimum: $- {\dfrac{2}{\sqrt 3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.