Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.7 Exercises - Page 978: 8

Answer

$f(\dfrac{1}{2},0)$ is a local maximum and $f(\dfrac{-1}{2},0)$ local minimum.

Work Step by Step

Second derivative test: Some noteworthy points to calculate the local minimum, local maximum and saddle point of $f$. 1. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\gt 0$ , then $f(p,q)$ is a local minimum. 2.If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \gt 0$ and $f_{xx}(p,q)\lt 0$ , then $f(p,q)$ is a local maximum. 3. If $D(p,q)=f_{xx}(p,q)f_{yy}(p,q)-[f_{xy}(p,q)]^2 \lt 0$ , then $f(p,q)$ is not a local minimum, local maximum, or a saddle point. For the given question, we have $f_x(x,y)=e^{-2x^2-2y^2}(1-4x^2)$ and $f_y(x,y)=-4xye^{-2x^2-2y^2}$ gives $(x,y)=(\dfrac{1}{2},0),(\dfrac{-1}{2},0)$. For $(x,y)=(\dfrac{1}{2},0)$ $D(\dfrac{1}{2},0)=8e^{-1} \gt 0$ and $f_{xx}(\dfrac{1}{2},0)=e^{-1/2}(-4) \lt 0$ For $(x,y)=(\dfrac{1}{2},0)$ $D(\dfrac{-1}{2},0)=8e^{-1} \gt 0$ and $f_{xx}(\dfrac{1}{2},0)=e^{-1/2}(4) \gt 0$ This implies that $f(\dfrac{1}{2},0)$ is a local maximum and $f(\dfrac{-1}{2},0)$ local minimum.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.