Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.3 Exercises - Page 937: 58

Answer

$v_{x}=e^{ x e^{y}+y }$ $v_{y}= x e^{ y+x e^{y} }$ $v_{yx}=e^{y+x e^{y}} [x(y_{x}+e^{y} ) +1] $ $v_{xy}=e^{x e^{y}+y} (x e^{y}+1)$ $v_{xx}=e^{x e^{y}+y}(e^{y}+y_{x})$ $v_{yy}=x e^{y+x e^{y}}( 1+x e^{y} )$

Work Step by Step

$v=e^{x e^{y}}$ $ \ln v=\ln e^{x e^{y}}$ $ \ln v= x e^{y} \ln e$ $ \ln v= x e^{y} $ Differentiating with respect to x $\frac{ ∂}{∂ x} \ln v= \frac{ ∂}{∂ x} x e^{y}$ $\frac{ ∂}{∂ v} \ln v \frac{ ∂v}{∂ x} = e^{y} \frac{ ∂}{∂ x} x $ $\frac{1}{v} \frac{ ∂v}{∂ x} = e^{y} $ $ \frac{ ∂v}{∂ x} = v e^{y} = e^{x e^{y}} e^{y} $ $v_{x}= e^{xe^{y}+y}$ Similarly, differentiating with respect to y $ \ln v= x e^{y} $ $\frac{ ∂}{∂ y} \ln v= \frac{ ∂}{∂ y} x e^{y}$ $\frac{ ∂}{∂ v} \ln v \frac{ ∂v}{∂ y} = x \frac{ ∂}{∂ y} e^{y} $ $\frac{1}{v} \frac{ ∂v}{∂ y} = xe^{y} $ $ \frac{ ∂v}{∂ y} = vx e^{y} =x e^{x e^{y}} e^{y} $ $v_{y}=xe^{xe^{y}+y}$ $v_{yx}= \frac{ ∂ }{∂x}( xe^{xe^{y}+y} )$ $v_{yx}= x\frac{ ∂ }{∂x}( e^{xe^{y}+y} )+ e^{xe^{y}+y} $ $v_{yx}= x( e^{xe^{y}+y} ) \frac{ ∂ }{∂x} (x e^{y}+y) + e^{xe^{y}+y} $ $v_{yx}= x( e^{xe^{y}+y} ) \frac{ ∂ }{∂x} (x e^{y}+y ) + e^{xe^{y}+y} $ $v_{yx}= x( e^{xe^{y}+y} ) [\frac{ ∂ }{∂x} (x e^{y})+ \frac{ ∂ y}{∂x} ] + e^{xe^{y}+y} $ $v_{yx}= x( e^{xe^{y}+y} ) [ e^{y} \frac{ ∂ }{∂x} (x)+ \frac{ ∂ y}{∂x} ] + e^{xe^{y}+y} $ $v_{yx}= x( e^{xe^{y}+y} ) [ e^{y} + \frac{ ∂ y}{∂x} ] + e^{xe^{y}+y} $ $v_{yx}=e^{x e^{y}+y}[x( e^{y}+y_{x} )+1] $ $v_{xy}= \frac{ ∂ }{ ∂y}( e^{xe^{y}+y })$ $v_{xy}= ( e^{xe^{y}+y }) \frac{ ∂ }{ ∂y} (xe^{y}+y) $ $v_{xy}= ( e^{xe^{y}+y }) [\frac{ ∂ }{ ∂y} (xe^{y})+ \frac{ ∂y }{ ∂y} ] $ $v_{xy}= ( e^{xe^{y}+y }) [ x\frac{ ∂ }{ ∂y} (e^{y})+ \frac{ ∂y }{ ∂y} ] $ $v_{xy}= ( e^{xe^{y}+y }) [ xe^{y}+ 1] $ $v_{xx}= \frac{∂ }{ ∂x }( e^{xe^{y}+y} )$ $v_{xx}=( e^{xe^{y}+y} \frac{∂ }{ ∂x } (xe^{y}+y) )$ $v_{xx}=( e^{xe^{y}+y} [ \frac{∂ }{ ∂x } (xe^{y})+ \frac{∂ }{ ∂x } y]$ $v_{xx}=( e^{xe^{y}+y} [ e^{y}\frac{∂ }{ ∂x } (x)+ \frac{∂ y }{ ∂x } ]$ $v_{xx}=( e^{xe^{y}+y} [ e^{y}+ \frac{∂ y }{ ∂x } ]$ $v_{xx}=( e^{xe^{y}+y} [ e^{y}+ y_{x} ]$ $v_{yy}= \frac{∂ }{ ∂y} ( xe^{xe^{y}+y} )$ $v_{yy}= x \frac{∂ }{ ∂y} ( e^{xe^{y}+y} )$ $v_{yy}= x ( e^{xe^{y}+y} ) \frac{∂ }{ ∂y} (xe^{y}+y) $ $v_{yy}= x ( e^{xe^{y}+y} ) [\frac{∂ }{ ∂y} (xe^{y})+ \frac{∂y }{ ∂y} ] $ $v_{yy}= x ( e^{xe^{y}+y} ) [x\frac{∂ }{ ∂y} (e^{y})+1 ] $ $v_{yy}= x ( e^{xe^{y}+y} ) [x e^{y}+1 ] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.