Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 14 - Partial Derivatives - 14.2 Exercises - Page 923: 22

Answer

Does not exist

Work Step by Step

Evaluate the limit along $x=t$, $y=t$, $z=t$: $\lim\limits_{(x,y,z) \to (0,0,0)}\frac{yz}{x^2+4y^2+9z^2}=\lim\limits_{t \to 0}\frac{t\cdot t}{t^2+4t^2+9t^2}=\lim\limits_{t \to 0}\frac{t^2}{14t^2}=\lim\limits_{t \to 0}\frac{1}{14}=\frac{1}{14}$ Now, evaluate the limit along $x=t$, $y=t$, $z=-t$: $\lim\limits_{(x,y,z) \to (0,0,0)}\frac{yz}{x^2+4y^2+9z^2}=\lim\limits_{t \to 0}\frac{t\cdot (-t)}{t^2+4t^2+9(-t)^2}=\lim\limits_{t \to 0}\frac{-t^2}{14t^2}=\lim\limits_{t \to 0}\frac{-1}{14}=-\frac{1}{14}$ Since the limits along the two curves which lie the origin are different, the value of the limit does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.