Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.2 Exercises - Page 876: 31

Answer

$x=-\pi-t,\ \ \ y=\pi+t$, $\ \ $ $z =-\pi t$

Work Step by Step

Work done in Geogebra CAS (free online). From the parametric equations, for the point $(-\pi,\pi,0)$, t is $\pi.$. CAS entry: k:=pi Next, define r(t) and r'(t) CAS entry: $r(t):=(t\cos t,t,t\sin t)$ CAS entry: $r1(t)=$Derivative( r(t)) To plot the point $(-\pi,\pi,0)$: CAS entry: $A=r(k)$ To find the tangent vector at $(-\pi,\pi,0)$: CAS entry: $u:=r1(k)$ We now use the point-vector facility of geogebra to draw the vector u from point A. Then, the tangent line. CAS entry: Line(A,u) The tangent line contains $(-\pi,\pi,0)$ and is parallel to the vector $\langle-1,\ 1, -\pi\rangle$. Its parametric equations are (see sec 12-5): $x=-\pi-t,\ \ \ y=\pi+t$, $\ \ $ $z =-\pi t$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.