Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Infinite Sequences and Series - 11.9 Exercises - Page 776: 37

Answer

See the explanation

Work Step by Step

Part (a) $f(x)=\sum_{n=0}^\infty \frac{x^n}{n!}$ $f(x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\ldots$........(1) Differentiating both sides, $f'(x)=0+1+\frac{2x}{2!}+\frac{3x^2}{3!}+\frac{4x^3}{4!}+\ldots$ $f'(x)=1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\ldots$.........(2) Comparing (1) an (2), we conclude $f'(x)=f(x)$. Part (b) Define $g(x)=e^x$. The n-th derivative at $x=0$ is $g^{(n)}(0)=e^0=1$ Then, $g(x)=\sum_{n=0}^\infty \frac{g^{(n)}(0)x^n}{n!}=\sum_{n=0}^\infty \frac{x^n}{n!}$ Thus, $f(x)=g(x)=e^x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.