Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 6 - Review - Review Exercises - Page 441: 9


($P\cap E^{\prime}\cap Q)^{\prime}$

Work Step by Step

$A^{\prime}$ is the complement of A (in $S$), the set of all elements of $S$ NOT in $A$. $A^{\prime}=\{x\in S|x\not\in A\}$ For an element to be in $A\cup B$, it must be in $A$ OR in $B$. For an element to be in $A\cap B$, it must be in $A$ AND in $B$. ---------------- S: the set of all integers; P: the set of all positive integers E: the set of all even integers; Q: the set of all integers that are perfects squares -------------- The set of all integers that are not positive odd perfect squares NOT [ (positive) AND (Odd) AND (perfect squares)] NOT [ (from P) AND (NOT from E) AND ( from Q) ] ($P\cap E^{\prime}\cap Q)^{\prime}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.