Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 15 - Section 15.3 - Maxima and Minima - Exercises - Page 1117: 19

Answer

$${\text{Relative maximum at the point }}\left( { - \frac{7}{4},\frac{1}{4},\frac{{19}}{8}} \right)$$

Work Step by Step

$$\eqalign{ & g\left( {x,y} \right) = - {x^2} - 2xy - 3{y^2} - 3x - 2y \cr & {\text{Calculate the first partial derivatives of }}g\left( {x,y} \right) \cr & {g_x}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ { - {x^2} - 2xy - 3{y^2} - 3x - 2y} \right] \cr & {g_x}\left( {x,y} \right) = - 2x - 2y - 3 \cr & and \cr & {g_y}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ { - {x^2} - 2xy - 3{y^2} - 3x - 2y} \right] \cr & {g_y}\left( {x,y} \right) = - 2x - 6y - 2 \cr & \cr & {\text{Setting both first partial derivatives equal to zero, we have}} \cr & {g_x}\left( {x,y} \right) = 0,{\text{ }}{g_y}\left( {x,y} \right) = 0 \cr & - 2x - 2y - 3 = 0{\text{ }}\left( {\bf{1}} \right),{\text{ }} - 2x - 6y - 2 = 0{\text{ }}\left( {\bf{2}} \right) \cr & {\text{Solving the equations simultaneously, we obtain}} \cr & x = - \frac{7}{4},{\text{ }}y = \frac{1}{4} \cr & {\text{The critical point is }}\left( { - \frac{7}{4},\frac{1}{4}} \right) \cr & \cr & {\text{Find the second partial derivatives of }}g\left( {x,y} \right){\text{ and }}{g_{xy}}\left( {x,y} \right) \cr & {g_{xx}}\left( {x,y} \right) = \frac{\partial }{{\partial x}}\left[ { - 2x - 2y - 3} \right] = - 2 \cr & {g_{yy}}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ { - 2x - 6y - 2} \right] = - 6 \cr & {g_{xy}}\left( {x,y} \right) = \frac{\partial }{{\partial y}}\left[ { - 2x - 2y - 3} \right] = - 2 \cr & {\text{By the second partials test}} \cr & d\left( {x,y} \right) = {g_{xx}}\left( {a,b} \right){g_{yy}}\left( {a,b} \right) - {\left[ {{g_{xy}}\left( {x,y} \right)} \right]^2} \cr & {\text{Evaluate }}d\left( {x,y} \right){\text{ at the critical point }}\left( { - \frac{7}{4},\frac{1}{4}} \right) \cr & d\left( { - \frac{7}{4},\frac{1}{4}} \right) = {g_{xx}}\left( { - \frac{7}{4},\frac{1}{4}} \right){g_{yy}}\left( { - \frac{7}{4},\frac{1}{4}} \right) - {\left[ {{g_{xy}}\left( { - \frac{7}{4},\frac{1}{4}} \right)} \right]^2} \cr & d\left( { - \frac{7}{4},\frac{1}{4}} \right) = \left( { - 2} \right)\left( { - 6} \right) - {\left[ { - 2} \right]^2} \cr & d\left( { - \frac{7}{4},\frac{1}{4}} \right) = 8 \cr & d > 0,{\text{ and }}{g_{xx}}\left( { - \frac{7}{4},\frac{1}{4}} \right) = - 2 < 0 \cr & {\text{then}} \cr & g\left( {x,y} \right){\text{ has a relative maximum at }}\left( { - \frac{7}{4},\frac{1}{4},g\left( { - \frac{7}{4},\frac{1}{4}} \right)} \right) \cr & \cr & g\left( { - \frac{7}{4},\frac{1}{4}} \right) = - {\left( { - \frac{7}{4}} \right)^2} - 2\left( { - \frac{7}{4}} \right)\left( {\frac{1}{4}} \right) - 3{\left( {\frac{1}{4}} \right)^2} - 3\left( { - \frac{7}{4}} \right) - 2\left( {\frac{1}{4}} \right) \cr & g\left( { - \frac{7}{4},\frac{1}{4}} \right) = \frac{{19}}{8} \cr & {\text{Relative maximum at the point }}\left( { - \frac{7}{4},\frac{1}{4},\frac{{19}}{8}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.