Answer
$ -\dfrac{1}{2} e^{-2x+11} +C$
Work Step by Step
We are given the integral $I=\int e^{-2x+11} \ dx$
We will solve the given integral by using u-substitution method.
Let us consider that $u=-2x+11 \implies dx=-\dfrac{du}{2}$
So, we can write as:
$\int e^{-2x+11} \ dx=\int e^{u} (-\dfrac{du}{2})$
or, $=-\dfrac{1}{2} \int e^u \ du$
or, $=- \dfrac{1}{2} e^u +C$
or, $= -\dfrac{1}{2} e^{-2x+11} +C$