Answer
$\displaystyle \lim_{x\rightarrow 14.75^{-}}r(t)=21,\quad\lim_{x\rightarrow 14.75^{+}}r(t)=21,\quad \lim_{x\rightarrow 14.75}r(t)=21,\quad r(14.75)=0.01$
Work Step by Step
Tracing the points of the graph to the left of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $21$
$\displaystyle \lim_{x\rightarrow 14.75^{-}}r(t)=21$
Tracing the points of the graph to the right of $x=14.75$, and sliding towards the value $x=14.75,$ the y-coordinates approach the value $21$
$\displaystyle \lim_{x\rightarrow 14.75^{+}}r(t)=21$
The one-sided limits exist and are equal. Thus:
$\displaystyle \lim_{x\rightarrow 14.75}r(t)=21$
Point $(14.75,21)$ is NOT on the graph. The point $(14.75,0.01)$ is on the graph, so
$r(14.75)=0.01$